Multidisciplinary Vertically Integrated Project (VIP) Teams at the University of Hawaii: Challenges and Synergy
Abstract
The Vertically Integrated Projects (VIP) Program is characterized by large, multidisciplinary teams of undergraduate and graduate students focused on long-term research problems aligned with the faculty mentor's field of interest. In terms of methodology, it follows a project-based cohort approach to education where students can potentially work on the same project over multiple years and with a familiar group of students. One of the challenges in running a VIP team is the multidisciplinary aspect. This paper discusses the challenges associated with transitioning traditionally discipline-siloed projects to multidisciplinary projects using VIP as the catalyst. Said another way, we describe the ongoing lessons learned of changing the mindset of students (and faculty) from ``you're electrical engineering, I'm mechanical engineering'' to ``we're engineering''.
In Fall 2015, the VIP Program at the University of Hawai`i consisted of six VIP teams: three composed primarily of EE students, one composed of ME students, and two with a mix of engineering students. The latter two teams are used as case studies to test our theories for incorporating multidisciplinary VIP teams into existing curricula. A desired outcome of this investigation will be elucidating a best-practices approach for VIP teams across disciplines including electrical, computer, mechanical, and civil engineering. This includes how to initiate formation of such groups, how to handle curriculum challenges between the programs, and how to handle the needs of the students within this educational program. Ultimately, we hope to develop learning in a multidisciplinary design environment that also fulfills the requirements of a degree in engineering, to the benefit of all the students involved, regardless of major.
In Fall 2015, the VIP Program at the University of Hawai`i consisted of six VIP teams: three composed primarily of EE students, one composed of ME students, and two with a mix of engineering students. The latter two teams are used as case studies to test our theories for incorporating multidisciplinary VIP teams into existing curricula. A desired outcome of this investigation will be elucidating a best-practices approach for VIP teams across disciplines including electrical, computer, mechanical, and civil engineering. This includes how to initiate formation of such groups, how to handle curriculum challenges between the programs, and how to handle the needs of the students within this educational program. Ultimately, we hope to develop learning in a multidisciplinary design environment that also fulfills the requirements of a degree in engineering, to the benefit of all the students involved, regardless of major.
VIP Publication
On