Georgia Institute of Technology VIP Program

North Ave NW
Atlanta, Georgia 30332, United States
Website

Georgia Institute of Technology

North Ave NW
AtlantaGeorgia 30332
United States
Latitude: 33.775618
Longitude: -84.396285

The Institution


Georgia Institute of Technology is committed to improving the human condition through advanced science and technology. With more than 100 centers focused on interdisciplinary research, Georgia Tech consistently contributes vital research and innovation to American government, industry, and business. Georgia Tech provides a focused, technologically based education to both undergraduate and graduate students.

The Program


The VIP Program at Georgia Tech builds upon multidisciplinary and vertically integrated teams. The site has achieved high team longevity through the integration of VIP teams into instructors’ research, with teams making meaningful contributions to instructors’ research efforts. Program-level initiatives include retrospective analysis of peer evaluations to understand team dynamics, and to identify patterns across the program and areas for improvement; and development, documentation and dissemination of faculty professional development tools, workshops and resources. Georgia Tech spearheaded the establishment of the VIP Consortium, with the ultimate goal of transforming undergraduate education. As the lead organization, Georgia Tech seeks to continue expanding the consortium, to establish the organization as an independent body with active engagement between member institutions, and to cultivate a community of collaboration. As contributing members, Georgia Tech has developed the consortium webpage, is working to disseminate peer-evaluation tools, developing professional development tools, workshops and resources, and developing an online sharing portal for Consortium members.

Directors


Coordinators


Julie Sonnenberg-Klein

VIP Teams

  • To develop a system that will be able to drive like an expert human driver. In order to achieve this, we will initially monitor the driving styles of several drivers using a high-fidelity driving simulator. Based on the measurements, we will be able to classify drivers according to their skill using graphical inference models. We will then develop suitable models for drivers’ actions and...
  • Future wireless communication devices will need to dynamically learn their environment and opportunistically exploit spectrum. The goal of this project is to integrate machine learning algorithms into communication architectures to achieve the agility required for the task. The team will participate to the DARPA Spectrum Collaboration Challenge (SC2) and test its solutions against other...
  • To develop a framework that fundamentally alters the development of algorithms. We desire to create an automated method that starts with the best human algorithms and then dispassionately develops hybrid algorithms that outperform existing methods. And then prove that these algorithms can also be studied by humans for inspiration in development of new algorithm and optimization methods....
  • To develop a campus-wide visualization, feedback and analytics platform to better understand and to systematically improve campus resource management.
  • Use engineering design and development skills for solving social problems and meeting social needs. A collection of ongoing projects are selected from corporate and non-profit organizations. All projects aim to improve the lives of the under-privileged domestic population or people at the bottom of pyramid in the developing world. ESI team members can also propose projects that help...
  • To design and build a solar powered vehicle to compete in the Formula Sun Grand Prix, an endurance based track race, and the American Solar Challenge, a cross-country road race.
  • To develop, evaluate and deploy health applications that can help doctors take care of their patients and patients do their part.
  • Improve the transportation systems to, within, and from Georgia Tech.
  • To study soft, biocompatible materials to design low-profile, unobtrusive wearable and implantable electronics for advancing human healthcare and wellness.
  • To develop smart city infrastructure health condition monitoring, detection and diagnosis with the use of emerging technologies (e.g. smart phones, 2D imaging, 3D laser, LiDAR, UAV, GPS/GIS, crowdsourcing, voice recognition, etc.) with artificial intelligence, machine learning, computer vision, pattern recognition, signal processing, and multi-source/scale/frequency/resolution data fusion, and...
  • Create an Internet of People and Things within Bobby Dodd stadium to enhance the game-day experiences and safety of 55,000 Georgia Tech football fans. This IoPT is a distributed system that includes: sensor networks/systems for gathering and processing information from the game, fans, and the stadium itself; making this information available over 4/5G, WiFi and other wireless systems to fans...