Georgia Institute of Technology VIP Program

North Ave NW
Atlanta, Georgia 30332, United States
Website

Georgia Institute of Technology

North Ave NW
AtlantaGeorgia 30332
United States
Latitude: 33.775618
Longitude: -84.396285

The Institution


Georgia Institute of Technology is committed to improving the human condition through advanced science and technology. With more than 100 centers focused on interdisciplinary research, Georgia Tech consistently contributes vital research and innovation to American government, industry, and business. Georgia Tech provides a focused, technologically based education to both undergraduate and graduate students.

The Program


The VIP Program at Georgia Tech builds upon multidisciplinary and vertically integrated teams. The site has achieved high team longevity through the integration of VIP teams into instructors’ research, with teams making meaningful contributions to instructors’ research efforts. Program-level initiatives include retrospective analysis of peer evaluations to understand team dynamics, and to identify patterns across the program and areas for improvement; and development, documentation and dissemination of faculty professional development tools, workshops and resources. Georgia Tech spearheaded the establishment of the VIP Consortium, with the ultimate goal of transforming undergraduate education. As the lead organization, Georgia Tech seeks to continue expanding the consortium, to establish the organization as an independent body with active engagement between member institutions, and to cultivate a community of collaboration. As contributing members, Georgia Tech has developed the consortium webpage, is working to disseminate peer-evaluation tools, developing professional development tools, workshops and resources, and developing an online sharing portal for Consortium members.

Directors


Coordinators


Julie Sonnenberg-Klein

VIP Teams

  • For students to learn the theory and gain the skills necessary to fabricate next-gen batteries for EVs, spacecraft, and Smart Cities infrastructure.
  • Future wireless communication devices will need to dynamically learn their environment and opportunistically exploit spectrum. The goal of this project is to integrate machine learning algorithms into communication architectures to achieve the agility required for the task. The team will participate to the DARPA Spectrum Collaboration Challenge (SC2) and test its solutions against other...
  • Enable the creation of augmented-reality applications and experiences using a wide range of delivery platforms and AR technologies. Current projects use Argon, an augmented reality software suite developed at Georgia Tech that is both a Javascript/HTML5 framework and a set of browsers and tools.
  • To research and design information, communication, and media systems to address regional civic issues, using techniques from design, computing, and the social sciences, in collaboration with government and community partners. These systems will have real-world impact, and promote social sustainability, equity, and justice.
  • To develop web apps for online debates and collaborative problem solving. Work experience in an interdisciplinary team. Fun. Our VIP team does the main design work of the NSF project “Fostering self-correcting reasoning with reflection systems” (http://agora.gatech.edu/node/52). We design, test, and iteratively improve the Reflect! platform. What is Reflect!? A collaborative tool that...
  • Explore the human technology frontier as it relates to technologies for sports spanning the continuum from the athlete to the fan.  Projects will include wearable technologies to empower athletes via advanced sensing and multi-modal real-time feedback via smart textiles, to immersive technologies (e.g. augmented and virtual reality ) to improve the fan experience in live sports venues and at...
  • At Georgia Tech, we live in an incubator for problem solving, scientific inquiry, and technological innovation, but the public at large is surprisingly ignorant about the STEM disciplines. We will build the Georgia Tech Mobile STEM Laboratory – a sustainable and continually growing infrastructure we’ll use to measurably impact this ignorance regionally and nationally. Ultimately, we’ll have a...
  • To design, build, defend and race an open-wheel formula-style vehicle in the annual Formula SAE competition.
  • To design, build, defend and race a high-performance off-road vehicle in the annual SAE BAJA competition.
  • To improve health outcomes, nutrition, and general living conditions in developing nations and resource-limited environments through a variety of key technologies. These solutions include: sensors for sanitation in challenging environments, improving access to healthcare through the development of low-cost technologies focusing primarily on child and maternal health, data analytics and human...
  • Internet of things (IOT) has the potential to revolutionize the healthcare industry. Thus far, most IOT applications focus on improving monitoring and physiological sensing of healthcare and patient care, however, the next generation of healthcare technologies will focus on multiplexed points of care testing, diagnostics, and treatment. The goal of this course is to engage students to...

  • Modern electronic devices are powerful, but uninspiring; they are ubiquitous, but ephemeral. We will design and fabricate devices for music production, gaming, and computing sparked by real-world designs from the past as well as fictional formulations of imagined futures. The black-and-white, utilitarian minimalism of modern laptops and cell phones that blight the aisles of Best Buy with...